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PREFPACE

Part of the Project RAND research program consists of
basic supporting studies in mathematics. This includes the
study of combinatorial problems, with applications to
comnunication networks, switching circuits, error—detecting
and error—correcting codes, etc.

’jj«/‘l" Hnie prllecalonme e oo Aty “f

A number of these combilnatorial problems can be

formulated in terms of matrices made up of columns of zeros

and ones. In the present Femorandum the authors continue the

work of RM—2896—PR, Widths and Helghts of (0, 1)-Matrices,

to obtain a simple construction that produces a matrix having
a minimal o—width for all a.
The work of the coauthor, Dr. Ryser, was supported in

part by the Office of Ordnance Research. ¢




SUMMARY

In a previous Memorandum (RM-2896—PR) the notion of the
o~width of a (0, 1)-matrix was introduced, and a formula for |
the minimal a-width taken over the class of all (0, 1)-matrices
having specified row and column sums was obtained. The present
Memorandum continues the study begun in RM—2896~PR. The
principal new result is a simple construction that produces
a matrix having the property that its a—widths are minimal

for all a.
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MULTIPLICITIES AND MINIMAL WIDTHS FOR (0, 1)-MATRICES

1. INTRODUCTION

In a previous paper [1] the notion of the a-width EA(a)
of a (0, 1)-matrix A was introduced, and a formula for the
minimal a-width £(a), taken over the class (¥ of all (0, 1)-
matrices having the same row and column sums as A, was
obtained. The main tool in arriving at this formula was a
block decomposition theorem (Theorem 3.1 of (1], repeated
in this paper as Theorem 3.1) that established the existence,
in the class (] generated by A, of certain matrices having a
simple block structure. The block decomposition theorem does
not itself directly involve the notion of minimal a-width,
but rather centers around a related class concept, that of
multiplicity. We review both of these notions in Sec. 3,
together with some other pertinent definitions and results.

The present paper continues the study begun in [1]. The
principal contribution is a simple construction which produces
a single matrix A in the class ()7 that has some remarkable
properties: first, the partial row—sum vectors of A are as
smooth as possible in the sense of majorization (Theorem 4,2);
second, all minimal aq-widths and multiplicities for the class (I
can be obtained directly from A (Theorem 4.3 and Corollary 4.4),.

In the concluding section we apply the matrix A in the
solution of a problem closely related to the minimal width
problem. For each A in 07, define “A(B) to be the maximal

number of columns that can be selected from A in such a way




.

that the resulting submatrix has at most B 1's in each row.
It follows readily that the sequences EA(a) and uA,(B), where
A' 1s the complement of A, determine each other, and hence
that the class sequence u(p) = max uA(B) 18 determined by

A in(t
the minimal width sequence for the complementary class.

2. A BASIC CONSTRUCTION

Let A be a matrix of m rows and n colurns whose entries
are elther O or 1. We call A a (0, 1)-matrix of size m by n.
Let the sum of row 1 of A be denoted by ry and the sum of

column J of A by sJ. We call
(2.1) R = (I‘l, r2, LICR 'Y rm)

the row—sum vector of A, and

(2.2) S = (sy, Sos eees sn)

the column—sum vector of A, These vectors determine a class,

(2.3) 3'(= m(R: S):

consisting of all (O, 1)-matrices of size m by n having row—
sum vector R and column—sum vector S. Simple necessary and
sufficient conditions on R and S are known 1in order that the
class OT (R, S) be nonempty [3], [5&].
Let A be in O and consider the 2 by 2 submatrices of A
of the types
(1 0 l’o 1‘\

LOI’LIO

i
—



An interchange is a transformation of the elements of A that

changes a minor of one of these types into the other, leaving
all other elements fixed. The interchange theorem [5] asserts
that if A and B are in (J, then A is transformable into B by
interchanges.

Throughout this paper we suppose, without loss of

generality, that CYls nonempty and that

(2.4) ry>Try2 ... 21, >0,

(2.5) 3) > 852« 28> 0.

Such an (¢ i1s termed normalized.

Let A = [aIJ] be in O{. We call the column vector

r £ T
Z a
=1 Y

I
Cn
It
-

(2.6) R¢

2 a
| J=1 mJJ

the Lth partial row-sum vector of A. Thus Rn = RT, where RT

denotes the transpose of R.
Given the vectors R and S for a normalized class Of, there
is a simple rule for constructing an A in@/. This rule may be

stated somewhat loosely as follows: Select any column J and

insert its 1's in the positions corresponding<22 the sJ largest




row sums. Delete column J, reduce each of these sJ row sums

by 1, and repeat the entire procedure on another column.

Example. Let Of be determined by

R=(7, 6, 3, 2, 2, 2, 2, 2),

(4, 4, &4, 4, 4, 4, 1, 1)

S

Suppose we apply the rule from "right to left," 1.e., select
the last column first, then the next to last, and so on, and
give preference to the bottommost positions in a column in
case of ties (this keeps the partial row sums monotone). The
rule then constructs the following matrix K, having partial

Vo

row—sum vectors given by the matrix M:

11111101T
1 0111110
1 01 0010 O
T = 1 0010 0 0 O ,
01 01 0 0 0 O
| o1 0 01 0 0 O
01 001 0 0 O
0 01 001 0O
"1 2 3 4 5 6 6 T ]
11 2 3 4 5 6 6
11 2 2 2 3 3 3
= 111 2 2 2 2 2 .
011 2 2 2 2 2
01112 2 2 2
0111 2 2 2 2
00111 2 22|
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The validity of the construction can be established by
a simple interchange argument, as follows. Let A be in 076
and suppose B has been constructed by the rule. We must show
that B is in (X. Assume that in constructing B, the 1's 1in
column J were assigned initially; we may suppose without loss
of generality that these 1's occupy the sJ topmost positions
in column J. If A has a O above a 1 in colum J, then by the
monotonicity of the row sums of A, there is an interchange
that switches this 0 and 1 in column J. Hence we may apply
interchanges involving column j of A to obtain a transformed
matrix in (7 whose Jth column agrees with the Jth column of B.
We can now suppress column j of the transformed A and B, and
repeat the argument. Eventually A has been transformed by
interchanges into B, and thus B is in (/.

Of course an analogous procedure in which the roles of
rows and columns are reversed also constructs a matrix in the
class.

In Sec. 4 we shall apply this construction in the right
to left order (as in the example ), giving preference to
bottommost positions in a column in case of ties (as in the

example). The resulting matrix will be denoted by A.

3. A REVIEW OF MULTIPLICITY AND WIDTH

Let 01 = 01(R, S) be a normalized class and let a and &

be integers satisfying

(3.1) 0Ogagr,




(3.2) 1 ¢E<n.

We say that a pair a, ¢ in the respective ranges (3.1), (3.2)
are compatible 1f there 1s an A in Of having an m by & sub-
matrix E* each of whose row sums is at least a. If a and ¢
are compatible, consider the class of all m by & submatrices E*
of the matrices A in (U with the row sums of E* at least a,
and let %* denote the number of rows of E* whose sums are

precisely a. The nonnegative integer

(3-3) § = 6(01 E—)

that is equal to the minimum of the integers &* is called the

multiplicity of a with respect to &.

In "1] the following theorem was proved.

Theorem 3.1. Let a be compatible with & and of nultiplicity

6 with respect to £. Then there is a matrix A in the normalized

(31 of the form

!

I*IJZ

o]

J}X]
Y o |-
1

Here E is of size * by € with exactly a 1's in each row.

i
(3.4) A = l{

M is a matrix of size e by £ witha + 1 or more 1's in each

row. F 1s a matrix of size m - (e + 5) by & with exactly

a +1 1's in each row. J is a matrix of 1's of size e by f - &

and O is a zero matrix. The degenerate cases e = 0, e + < = m,

6 =0, f =¢&, and f = n are not excluded.




The a-width EA(G) of a matrix A in the normalized 7
is the fewest number of columns that can be selected from A
so that the resulting submatrix E* has row sums at least a.

Here 1 ¢ a ¢ r_. Then

(3.5) €a) = min §(a)
A itn®t

1s the minimal a-width of 07 . The integer £(a), which can

also be described as the least £ compatible with a, has been
explicitly determined in terms of the vectors R and S in [1].

This determination used the function

(3.6) N(¢&, e, f) = Tyt oeee T - (s£+l + ee. + sf) + e(f -¢£),

where ¢, e, f are integer parameters satisfying

(3.7) o0¢ &

[ZaN

n,

(3.8) O0gegm,

(3.9) €< f¢n.

Precisely, &(a) is the first £ such that
(3.10) N(¢, e, £) > a(m - e)

for all e, f satisfying (3.8), (3.9). Note that if A is in
O7(R, S) and if we write




(3.11) A = >

with X of size (m - e) by € and Y of size e by (f - &), then
(3.12) N(E, e, £) = N (X) + Ny(¥) + N, (2),

where Nl(Q) rNO(Q)? denotes the number of 1's (0O's) in a

(0, 1)-matrix Q.

It was also proved in [1] that if o, £ are compatible,

then

(3.13) *a, €) = (a + 1)m - s - min (N(£ - 1, e, £) + aec].
Ooge<m
£<f<n

(Only the special case of (3.13) in which € = £(a) is stated
explicitly in [1 ], but the proof there establishes (3.13) in

general. )

—

4, THE MATRICES A AND M

If
T = (tl, to, oo, b)),
™ = (t, tE, ..., t2

*),

are two vectors of nonnegative integers, then T is majorized

by ™ (4., (5], and we write

(4.1) T < T*,




provided that, with subscripts renumbered,

* * *
(B.2) by 2t 2 e 2t tp 2,2 w00 2t
* * *
(4.3) tp +t+ oo+ 8 <ty 4 Ly + e+ t,

*
3

(4.4) ¢

[
+
o+

D %
+
+
ct

1l + 2 m

In connection with this concept, we prove the following

lemma, which will be used in the proof of Theorem 4,2,

Lemma 4,1, Let T = (tl, tos ey tm) and

*

* *
T = (t;, t2, coey tm) be two vectors of nonnegative integers

satisfying (4.2), (4.3), (4.4). Let U be obtained from T by

reducing k of its positive components in positions

»*
1, 15, +es, 1, by 1. Similarly let U" be obtained from T

by reducing k of its positive components in positions

Jl’ J2’ ey Jk-b-y- l' H il S Jl) 12S J2’ ey ik S Jk’
then U < U*.

Proof. We proceed by induction on k. Let k = 1 and
set il = 1. Jl = J., We may take U and U* to be monotone
nonincreasing by assuming that component i' of T has been

reduced by 1 to get U, component J' of T* has been reduced

o

by 1 to set U'. Here 1 > 1, J' > J and

(u'S) t =ti+1= “«oe

YIRS

* * ® *

(4.6) t, = Eypl = =00 = tyy > yi41r
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where t =01f 1' = m and t* =01f J* = m, If now

141 Jr+l
*
1' ¢ §', then clearly U 2 U, Suppose that 1' > J'. Then

(4.7) 1¢1<J<I <1 ¢m,

*
If U is not majorized by U , there is an integer e

satisfying

(4.8) J' ¢ et
for which

* * *
(4.9) IR I IR A N 2 TR 7L TR S

By assumption,

*

* *
(4.10) t, + t2 + cee + te-l <t 4+ t2 + eee + te—l’
* * *
(4.11) t, + t2 + cee + te+1 <t 4 ty el 4 te+1'

Subtracting (4.10) from (4.9), and (4.9) from (4.11), yields

(4.12) t. > ¢,

(4.13) t;e+1 = te+1'

By (4.5), (4.7), (4.8), we have

(4.14) £y = tg,;

Thus (4.12), (4.13), (4.14) and t} t:+1 imply
4.1 Yot Lt

(4.15) te = t, = ol
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If e = J', this contradicts (4.6). If, on the other hand,
J' < e, then from (4.15) and (4.9) we have

»* * *
(4.16) t, 4 t2 + e+t 0= b+ t2 + eee + te-l'

We may now repeat the arzument with e - 1 in place of e.
Eventually (4.6) i1s contradicted. This verifies Lemma 4.1
for k = 1,

Assume the validity of the lemma for k - 1. Let P and P*
be obtained from T and T* by reducing components 12, 13, AMS , 1k of T
and components J2, J3, ooy Jk of T*. By the induction
assumption, we have P =< P*. Of course P and P* may not be
in monotone nonincreasing order, but such rearrangements of
them can be secured without disturbing the 11 position of P or
the Jl position of P*. Applying the argument used for k =1
to these rearrangements, we see that U < Lﬁ, thus proviné
Lemma 4,1,

Let the vectors R and S be given for a normalized class
O((R, S) and let A denote the matrix in O7(R, S) constructed
by the rule of Sec. 2, proceeding column-wise from right to
left and giving preference within a column to bottommost

positions in case of ties. We now prove

Theorem 4.2. Let A be arbitrary in the normalized class

S/ and let A have partial row-sum vectors,R;, Ry, ..., Rp.

Let the matrix A in C7 have partial row-sum vectors

1’ §2, A % Then R, < R, £€=1, 2, ..., n.

=
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Proof. We prove Theorem 4,2 by induction, Note that
(4.17) R, =R =R,
and hence the theorem is valid with €= n, Assume that

(4.18) R < R

£+1’

and consider the vectors E;: R¢.  The vector R, 1s obtained

*
from a nonincreasing rearrangement R£+ of R by reducing

1 £E+1

s distinct components of R* by 1. A rearrangement of

£4l E+1
ﬁa i1s obtained from the monotone ﬁé +1 DY reducing the first

components of R, . by 1. By Lemma 4.1, we have

4 £+1

£+l
(4.19) R&‘< R, .

This proves Theorem 4,2,

Theorem 4.3. The matrix A is of form (3.4) for all

compatible pairs a, £.

Proof. Let a and £ be compatible, and let

(4.20) A =

be the matrix whose existence is given by Theorem 3,1, Thus
E 1s of size 6 = *(a, £) by £, with exactly a 1's in each row;

M 1is of size e by £, with at least (a + 1) 1's in each Irow;




F is of sizem - (5 + e) by £ with exactly (a + 1) 1's in
each row; J is a matrix of size e by (f - £), consisting
entirely of 1's; and O is a zero mgtrix.

Consider the first £ columns of A. Each of the row sums
of these & columns must be at least a, for otherwise we may
use the matrix A to contradict ﬁé-& RZ. By the definition
of multiplicity, the first € columns of A cannot have fewer
than 5 rows with exactly a 1's in each row. Nor can these £
columns have more than * rows with exactly a 1's in each row.
For if this were the case, again R, R, would be contradicted.
Hence, since ﬁé is monotone, A has a * by £ matrix of form E
in the lower left corner, and the portion of A corresponding
to M and F of A must contain at least (¢ + 1) 1's in each

row. But

N(e, e, ) = Nl(F) + Nl(E) + NO(J) + Nl(O)

is a class invariant. Hence the portions of K‘corresponding
to F, J, and O of A are of the desired form. This completes
the proof.

Define ﬁ'to be the m by n matrix of nonnegative integers

whose column vectors are the partial row-sum vectors of K}

(4.21) M= [, Ry ..., R ]

We call M the multiplicity matrix of the normalized class 07,
Corollary 4.4 collects some immediate consequences of Theorem 4.3

that justify this nomenclature.
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Corollary 4.4, Let M = [ﬁi, ﬁé, 293 ﬁg] be the
multiplicity matrix of the normalized class Or- Then a and ¢

are compatible if and only if the last component of ﬁé 1s at

least a. If a and ¢ are compatible, the multiplicity é(a, £)

of a with respect to ¢ 1s equal to the number of components of

ﬁ; that are equal to a.

Example. To illustrate Theorem h.3, consider the

example of Sec, 2 corresponding to the compatible pair q = 15

E=3:
1 1 1)1 1 10 1]
1 o 11 1 111 o
1 0 1/ ¢ 0o 1] 0 o0
¥_.11 o0 o|1 0O o1l o0 ¢l
O 1 0,1 0 0|0 o
O 1 olo 1 ol o ¢
© 1 o0|C 1 0|0 ¢
lo o 110 o 1]/l0 o
M 2 3 4 5 6 6 77
1 1 2 3 4 5 6 6:
' 1 2 2 2 3 3 3]
. i 1 1 2 2 2 2 2
"elo 1 1 2 2 2 2 o)
¢c 1 1 1 2 2 2 2o
O 1 1 1 2 2 2 2:
0 ¢ 1 1 1 2 2 2]




From ﬁ: the multiplicity *(u2, €) for each compatible a, &

may be determined as in Corollary 4.4,

£1234567:5

0 4 1 0
(5
X

@]

0 0] 0 C
1l C C 0]
™~
x (5 5

a, z): & )| %

~
W

2 X

~
W

Here a crossed-out cell in the array means that q and &£ are
incompatible. <Since the minimal a-width Z(a) is the first &
compatible with a, circled entries in the array pick out
£(1) = 3, £(2) = 6. In terms of the matrix A, £(a) can be
read off by looking at its last row: the a-th 1 ot this row
occurs in column t(a).

vJe conclude this section by listing some properties

of Ya, £€):

(4.22) a, €) > (a, &€+ 1),

(4.23) a - 1, €a)) = C,

(4.24) 8a, €(a)) > O,

(4.25) a, €a)) = (a -1, &a) - 1) +m - s

£(a)"
The first three of these are evident, either from the definition
of multiplicity or from the multiplicity matrix M. The last

is easily proved using M. The property (4.25) can also be
established from the formula (3.13) for 5a, &), but this

approach is more complicated.




5. _THE SEQUENCES u,/s) AND (8).
A\ ;o Al

Let 0 =07 (R, 5) be a normalized class and supvose that

£ 13 an 1nteer parameter in the rangze
(5.1) l¢2gr;.

For each A in OU let uA(a) denote the maximal number of
columns of A all of whose rows sums are at most 2, (For
example, if A is the line-point incidence matrix of a oro-
Jective plane, then uA(Q) is the maximal number of points,
no three of which are collinear, l.e., the size of a maximal
oval in the plane.) 1In this section we point out the close
connection between this concept and that of width. In
particular, we show that the preceding discussion on
multipliclity and minimal width solves the problem of
determining the class sequence

(5.2) w(B) = max uA(B).
A IinOX

It will simplify matters in this section if we extend

the range of £ in (5.1) to include r = 0 by defining uA(G) = 0,

de also take EA(O) = 0.

By the complementary class (1" = O(R', 5') of Ol= O7(R,

we mean the class of all (0, 1)-matrices of size m by n with

row-sum vector

(5.3) R* =(nh-r,n-r P rl),

m-1’

m,

o

)

)




w =

and column-—sum vector

(5.4) S =(m=- s, m=- 8 3, «oc, M= Sl)'

For the purposes of this discussion we take O so that

ry < n, sl ¢ m, This 18 no real restriction and makes the
complementary class normalized. There is of course a
natural correspondence between the matrices of Ot and those
of Ol', given by taking the complement of A and reversing
the order of its rows and columns. e denote the resulting

matrix by A' and call it the class complement of A.

Lemma 5.1. Let a and 2 be integers in the respective

intervals
(5‘5) Osasn-rl,
(5.6) 0¢B<ry,

and let A' be the class complement of A, Then

(5.7) €pifa) ga+8

if and only 1if

(5.8) wa(B) > a + 8.

Proof. Note that a + B ranges over the interval
0O<a+Bgn.

Assume (5.7). Then there are a + 8 columns of A' having




~1 8...(«)_ 4

at least a 1's in each r, 1 lence there are q + £ columns

of A havinz at most 8 = |4 8)- @ 1's in each row. Thus

»

(5.8) holds. Conversely,r ¢ (56) holds, so that A has a+ 8
columns with at most 8 1liin g eich row, then A' has a + 8
columns with at least a 15 ixy.neach row. Hence (5.7) holds.
de use this lemma a inhes+er of times in the proof of
Theorem 5.2, which shows !t the sequences EA,(a) and uA(s)

determine each other.

Theorem 5.2. (1) Lia _ befixed in the interval (5.5)

and let B be the least inier -x In the interval (5.6) for which

ua(8) = 8> a. Then EA,(a)= o Q+B. Conversely, if o is

fixed in the interval (5.¢

M éA,(CI) = a + 8, then 8 is

the least integzer in (5.6]291? ~ Which uAlﬁ) - 8> a.

(11) Let B be fixed i ty-4:he interval (5.6) and let o be

the larzest integer in theinte ermal (5.5) for which

eA,(a) - a < B. Then uA(ﬁ):wﬂS. Conversely, if p is

fixed in the interval (5.6apd if Hp(8) = a + 8, then a is

the largest integer in (5.5

fo €0 whi ch E_A,(a) -ac< 8.

Proof. Observe that iy . sequences EA,(a) - a and
uA(B) - B are monotone noniyrezeasing. We now prove (1). Let
"a be fixed in (5.5) and letp peoe the least integer in (5.6)
for which u,(8) - 8 > a. 9y = as ex1ists, since
uA(rl) STy =n-r >a. hLeem S.1, we have EA,(a) < a + B,
If 8 = 0, then g = C, and th o> ONclusion follows. Ifpg > 0,

then «A(s - 1) - (8-1) <, gzifence by Lemma 5.1,
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gola)>a+p -1, Thusa+B-1< ggi(a) ¢ a+ B, and
hence eA,(a) =a + B.

Conversely, suppose £A,(a) =a+ B. We show first that
0¢Bgr. Clearly 0 ¢ B. Since also €y (n - r;) ¢n, then
B

£A,(a) -al EA,(n -r)- (n - rl) ¢ ry. Now by
hypothesis and Lemma 5.1, we have uA(B) - B>a. If also
uA(a -1) - (g ~-1) >a, Lemma 5.1 implies EA,(a) <a+B-1,
a contradiction. Hence 8 is the least integer in (5.6) for
which uA(B) - B> a.

The proof of (i1i) is similar.

Let Ol be a normalized class and let the complementary
normalized class 9U' have minimal width sequence £(a). The
discussion of the preceding section shows that the matrix A
in X' has width £(a) for each a = 0, 1, ..., n - r;. It
follows that the matrix K' in Or ylelds the sequence u(B):
(5.9) a(8) = max u,(8) = ug (8), B=0,1, ..., ;.

A in®
The sequences &(a) for O1' and u(2) for (1 determine each
other in the manner outlined in Theorem 5.2. In terms of the
matrix A in 0Of', the inteser 1(8) for J( can be singled out as
follows: if the (8 + 1)—st O of the last row of X occurs in

column j, then u(28) = J§ - 1.
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